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On ‘‘Path Analysis in Genetic Epidemiology: A Critique”’

SEWALL WRIGHT!

While the critique by Karlin et al. [1] was primarily concerned with recent ap-
plications of path analysis to genetic epidemiology by Rao and Morton [2, 3],
Rice et al. [4], and Cloninger [5], it devoted much space to alleged shortcomings
of path analysis in general. Since the latter authors are publishing a defense of
their methods [6], I will confine myself largely to the defense of path analysis
in general, a method that I proposed in 1918 [7], with first general account given
in 1921 8].

The purpose of this method is the evaluation of the relative importance of the
various causes of variation in a particular population. It should be emphasized
that it was concerned only with the precipitating variations due to causes, not
with causes in an absolute sense. The development of characters in a population
that has been made isogenic are absolutely dependent on an appropriate heredity
and also on an appropriate environment. Both are absolutely necessary, and no
evaluation of their relative importance is possible. Observed variation, however,
must be due 100% to environmental variation, since none can be due to genetic
variation by definition of ‘““isogenic’ (apart from very rare mutations).

Prof. W. E. Castle, my mentor as a graduate student, became involved in a
controversy on whether differences in total size in a population are due predom-
inantly to factors that affect the growth of all parts of the body alike or are merely
due to the summation effect, on various parts separately. He asked his graduate
students, H. D. Fish, and myself to calculate all of the 10 correlations among
five bone measurements made by a former student in a rather heterogeneous
population of rabbits. The 10 coefficients were all rather high (.558 to .758).
Prof. Castle took this as supporting his position [9] in opposition to the view of
certain others that racial crossing was likely to lead to disharmonious development
in later generations.

The correlations were, however, far from perfect. It seemed of interest to
attempt to make a more precise evaluation of the relative contributions of factors
affecting general size, of ones affecting certain groups of measurements, and of
ones with effects restricted to the particular measurement: to its squared standard
deviations. The method arrived at was what was later called path analysis, except
that the coefficients were the squares of the path coefficients.
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In a later paper [10] evaluating the relative importance of genetic and nongenetic
factors on the percentage of white in the piebald patterns of a large random-bred
stock of guinea pigs in comparison with that in a stock tracing to a single mating
in the seventh generation of brother-sister mating (nearly zero percentage due to
genetic variation), the term path coefficient was first used to avoid the ambiguity
of the signs of the square roots of the previous coefficients of determination.

In both of these studies, the causal variables were unmeasured hypothetical
ones, all broad classes. Path analysis is especially adapted to evaluating such
broad classes, but in later cases, it was applied to mixtures of measurable and
unmeasurable variable causes. The measurable ones had to be standardized for
comparability, but this was necessary in any case for comparison on a uniform
basis.

A specific factor such as an allele at a particular locus may increase general
size, but does so disproportionately and thus contributes to more than one of the
broad classes evaluated in the 1918 paper.

Karlin et al. give the following version of the general formula for path analysis:
y = I'x + u, “where the components of y are measurable endogenous variables
and those of x are exogenous variables that may or may not be measurable or
even well defined. The matrix I' contains the parameters of the model (path
coefficients, loadings) and u includes error terms that are uncorrelated with each
other and with x.” They state that the above equation generates the covariance
equationCy, = I'C,I'" + E, “where Cyis the covariance matrix of the y variables,
C, that of the x variables, and E that of the residual variables u.”

These expressions suggest a stereotyped approach, incompatible with the free
choice of a causal pattern on the basis of all available evidence on which path
analysis is based. In any case, this formulation seems to have little relation to
the simple formula actually used to derive the set of simultaneous equations that
are to be solved to obtain the path coefficients. Each equation is an analysis of
a correlation coefficient.

This formula is merely that for the correlation between a variable, y, and
another, x, that is represented as a linear function of certain causal variables, i,
with determination of y made complete by including a residual, independent of
the specified causes, r,, = Zp,; ryy, if y is represented as determined by causal
variables, j. Application of the basic formula to itself gives ry, = Zp,iri;py;.

The equations of the type r,, may conveniently be read off from a *“path diagram”
in which each cause is related to its effect by an arrow (associated with a path
coefficient p,;, etc.), while unresolved correlations like r;; above, between causes,
are connected by a two-headed arrow, associated with the correlation.

Some of the immediate causes of x and y may be treated as effects of more
remote causes and so on back, until ones treated as ultimate are reached. All of
these, including the residuals, are to be connected by two-headed arrows as
possibly correlated, unless there is reason to the contrary.

The correlation between any two variables in the system is the sum of contri-
butions from all of the paths by which one may trace backward along arrows
either to a common factor or to the middle of a two-headed one and then forward
along arrows to the other specified variable. No variable may be passed through
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more than once in the same compound path. Care must be taken that a variable
that enters in two capacities, effect and cause, is exactly the same in both. One
must never trace forward along an arrow and then backward on another since
contributions to the same effect by two causes do not imply any correlation
between them. Thus, there can never be more than one two-headed arrow in the
same compound path.

In the case of reciprocal interactions [11] between variables x and y, equations
Iy = Zpyiriy and ry, = Zp,r;, must be expanded separately. They provide in-
dependent equations.

In cases in which an adventitious correlation is imposed on two variables al-
ready represented as completely determined, correlations are imposed on the
causes of the two, deducible by reversing the direction of the arrows pertaining
to the causes. Cases arise in genetic epidemiology in which assortative mating
imposes correlations between mates already represented as completely determined
by heredity and environment. I carried out this procedure in an early paper [12]
without using any symbols other than single and two-headed arrows. Cloninger
[5] made the clarifying suggestion that such adventitious correlations be represented
in the original path diagram by a headless bar with the injunction to reverse the
directions of the arrows along the paths leading to the two variables in question.

While Karlin et al. do not give the usual basic formula, they give an illustration
of the “rule” for calculating contributions to a given correlation. They give the
correlation between certain variables x,y in a diagram quoted from Rao and
Morton [3] as of the form r,, = rir, + rirarsrg + rorgroryo (not the subscript
symbols used by them).

This violates the rule that a contribution to a correlation may include no more
than one r (associated with a two-headed arrow). In the present case, the variables
along all three of the connecting paths are connected only by single arrows so
that the correlations between them are all equal to the corresponding path coefficient.
The formula given by the usual rule r,, = p\p, + ps3pspsps + p1pPspop1o May
be converted into the form given by Karlin et al. without numerical error. It must
be reconverted into forms given by the rule as one of the simultaneous equations
to be solved to obtain the values of parameters, here all p’s. The conversion of
all of the p’s into r’s is then misleading as an illustration of the rule and is a
superfluous diversion in the solution.

It was recognized at the time of the first general account [8] that the method
was essentially identical mathematically with Pearson’s method of linear multiple
regression [13] in estimating the value of one variable from known values of
ones that are strongly correlated with it, while only weakly correlated with each
other, so as to yield the maximum coefficient of multiple correlation with the
given number of estimators. The pattern is stereotyped, with variables treated as
linear functions of others. The solutions from standardized estimators must as a
last step be multiplied by the ratio of the standard deviation of the variable estimated
to that of the estimator in the term in question. The method is thus stereotyped
and concrete in contrast with the unstereotyped, standardized method of causal
path analysis. If concrete terms are used throughout, the method is the same as
that proposed a century earlier by Gauss in his method of least squares as applied
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to linear expressions, except that there is a difference in weighting that need not
be discussed here.

The basic formula also applies to a different stereotyped pattern with standardized
variables, that is, Spearman’s factor analysis [14]. He seems to have had much
the same idea I had several years later: to evaluate causal patterns in the deter-
mination of components of IQ in terms of general intelligence and special aspects.-
Factor analysts used stereotyped patterns in order to achieve complete objectivity.
Their results can best be interpreted as giving a geometric representation of the
variables as points in the ““surface” of a multidimensional sphere, thereby revealing.
whatever clustering there is and suggesting common causes. The factors are
(usually) orthogonal axes, and the factor loadings (path coefficients) are the
coordinates of these. The method is applied to a set of variables that is treated
as coordinate. Each of these is represented as determined by a set of hypothetical
variables, yielding an array of similar simultaneous quadratic equations to be
solved. Hotelling [15] devised an iterative method for finding the factor loadings
with respect to the first axis, that accounts for the variables as far as possible in
the sense of the method of least squares. The residuals were treated similarly
with respect to a second axis and so on until all variance was exhausted. He
showed that the number of axes must be the same as the number of measured
variables including the self-correlations (r,, = 1) as he did. Other factor analysts
usually exclude the self-correlations until, as a final step, they are used to calculate
a special axis for each measured variable. The number of axes other than special,
required to practically exhaust variance, is usually much reduced, making it
possible to grasp the clustering of variables much more easily than when there
are many.

Tukey [16], in a critique of path analysis, expressed his conclusions as follows:
“the briefest possible summing up of the writer’s views is: ‘very good but they
don’t go far enough.’ In detail this view calls for regression in place of correlation.”
Turner and Stevens [17] also called for this substitution, and this is true of a
number of social scientists [18, 19].

The use of concrete causal variables in an unstereotyped pattern does not, of
course, lead to an evaluation of relative importance on a universal scale. The
purpose is instead estimation.

It has been held that estimation based on causes instead of merely correlated
estimators would be more stable under changes of conditions than with the latter.
There may be some truth in this but the restriction of the causal variables to ones
that are measured makes for a less acceptable causal pattern, and the restriction
of estimators to ones that are causal tends to base estimation on weaker coefficients
of multiple correlations. The usual consequences of causal multiple regression
is inferior estimation.

The most important application of path analysis has probably been to a problem
wholly different from those considered so far. This is to the effects of systems
of mating [20]. If it is the path coefficients that are known, the basic formula
can be used directly to calculate the correlation r,, between the variables that are
determined. Under diploid Mendelian heredity, it can be shown that the path
coefficient for the relation between an arbitrary value assigned a gamete and the
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zygote that results from the union with another gamete is:a = V1/[2(1 + F)],
where F is the correlation between the uniting gametes. The path relating one of
these gametes to the zygote that has produced itis: b = V(1/2)(1 + F'), where
the prime indicates the preceding generation. Thus the coefficient for the compound
path, gamete to gamete, is b a' = 1/2, irrespective of inbreeding or gene fre-
quencies. The compound path zygote to zygoteisab = V(1 + F)/(1 + F),
reducing to 1/2 at equilibrium where F = F'. It was possible by path analysis
to extend the knowledge of the effects of inbreeding from self-fertilization and
parent-offspring and brother-sister mating to any pattern of mating, regular or
irregular. The general formula is F = Z[(1/2)"(1 + F,)], where F is the in-
breeding coefficient (correlation) between uniting gametes, n is the number of
gamete to gamete paths in a compound path through a common ancestor with
inbreeding coefficient, F,, and summation applies to all paths connecting the
uniting gametes [21].

These correlations make possible a theoretical study of breeding structures of
populations. A correlation is always a function of the population from which the
gametes are drawn. The correlation relative to a subpopulation S, Fig, rises
toward Fip, that relative to the total, T. The correlation between gametes drawn
at random from a subpopulation, Fgr, falls off as the latter approaches the total,
not taking account of effects of recurrent mutation or long-range dispersion which
bring these processes to an end before the total is reached. These statistics are
related by the equation (1 — F;1) = (1 — Fis) (1 — Fgy). The theory has
been extended to polysomic hetedity [22] and sex linkage [23].

Karlin et al. present various reasons for rejecting path analysis as a valid
procedure. First, they consider that deviations from additivity and linearity in
the effects of variable causes, and deviations from normality in the distributions,
are so frequent that the method is practically useless. These objections apply just
as much to linear multiple regression and factor analysis as to causal factor
analysis. It is doubtful whether many statisticians are ready to abandon these
methods, especially the former. Estimation from a set of linear normal equations,
whether by Gauss’s method of least squares or Pearson’s multiple regression, is-
generally considered the most widely useful method that is available for this
purpose. Factor analysis is at least widely considered a useful method forsuggesting
common causes.

It seems to be the usual experience that additivity and linearity in the relation
of variables are approximated to an enormously greater extent than implied in
the discussion of Karlin et al.

Variables that are products of others (P = xy) are indeed encountered very
frequently and seem at first sight very far from additive and linear. We are con-
cerned, however, only with deviations from the means:

AP =P - P, Ax=x-3% Ay =1y -y
P + AP = (X + Ax)(G + Ay)

AP = (# — P) + yAx + Ay + AxAy .
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This is linear in Ax and Ay except for the quadratic term AxAy. This may be
negligible if the coefficients of variation, Ax/o,, Ay/o,, are as small as they
usually are for quantitative variation of organisms. If not negligible, it may be
possible to estimate the average contribution to the variances of AxAy as residual
variances.

Where deviations from additivity are too great to be ignored, this may often
be remedied by a transformation of scale, applied to all of the measurements
before any calculations are made. This was done in the first paper in which the
term path coefficient was used [10] and which was concerned with the roles of .
heredity and environment in determining the percentage of white in the coats of
guinea pigs of two strains: random bred and closely inbred. Among 17 closely
inbred strains, there was extreme positive skewness in the frequency distribution
of all with small average percentages (but no wholly self-colored individuals)
and extreme negative skewness, where the average percentages were high (but
only a few individuals were black-eyed white). The probability integrals of the
percentages of the individuals was used, essentially the same as the probit trans-
formation proposed later [24]. This overcame the obvious damping of effects
where percentages were close to 0 or 100 and normalized the frequency distri-
butions.

Path analysis indicated that 42% of the total variance (.0.643) of the random-
bred strain was genetic (genetic variance, .271), leaving .372 as its nongenetic
variance. The total variance of the inbred strain (derived from a single mating
in the seventh generation of brother-sister mating) was .364, in excellent agreement
since the genetic component did not differ significantly from zero. In a later
study [25], these same strains, but wholly different animals (the inbreds now
being descended from a single mating in the 22nd generation of brother-sister
mating), the total variance of the random-breds was .573, of which .233 was
genetic (apart from a small sex difference) and .340 residual, which happened
to agree exactly with the variances of the inbred strain. In other cases, a logarithmic
transformation is indicated but the deviation from additivity and linearity is often
so small that transformation is unnecessary.

Guinea pigs, like other species of the family Caviidae, normally lack thumb,
big toe, and little toe, but little toes, ranging from vestigial to well developed,
occur in many strains. This depends on multiple factors, genetic and environmental
[27]. Assume an underlying normal distribution of factors with two thresholds,
that for any development and that for perfect development. Assuming that the
observed frequencies of three-toed, poor four-toed, and good four-toed constitute
a trichotomy of a normal distribution, the standard deviations can be calculated
in terms of an assumed unit distance between thresholds [27, 28]. Path analysis
yields consistent results on the basis of this transformation [27, 28].

The sort of case in which deviations from additivity and linearity interfere
seriously with path analysis can be illustrated by a study of the factors affecting
the gains in weight of guinea pigs between birth and weaning at age 33 days.
Size of litter (determined at conception as shown by its agreement with number
of corpora lutea) has an obvious strong inverse effect, partly mitigated by stillbirths
and postnatal deaths before weaning. Unfortunately, the relation between litter
size and mortality of both sorts is highly nonlinear, the optimum size of litter
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being three in a vigorous stock. It seemed best to omit mortality from the causal
pattern, allowing its effect to be absorbed into that of size of litter.

The basic formula of path analysis is a property of the product-moment correlation
coefficient. Its validity is destroyed if subjected to Fisher’s z-transformation [29]
before deriving an equation from it.

As noted earlier, the coefficient for a compound path, gamete to gamete a
generation later, is exactly 1/2 irrespective of gene frequency. With frequencies
.90A:.10a, the frequency distribution of zygotes under random mating is .81 AA:
.18 Aa:.0laa. An attempt to normalize this extremely skewed distribution would
destroy the simplicity of the path coefficients and thus should not be made in
analysis involving parent and offspring or other relatives. Transformation of the
scale of measurement to improve additivity, made prior to any calculations, tends
to give an approach to normality, but persistent skewness due to asymmetric
gene frequencies should not be corrected.

The primary purpose of causal path analysis, the evaluation of the relative
importance of the varying causes in a specified population, does not require a
high degree of precision. Two significant figures are no doubt desirable, but one
may be fairly satisfactory.

The conclusion seems warranted that with a scale of measurement designed to
give approximate additivity, the usefulness of path analysis is restricted only
rather infrequently by extreme nonlinearity of relations and that deviations from
normality not corrected by transformation of scale should be ignored.

The second class of objections to path analysis raised by Karlin et al. had to
do with the difficulties of solving a set of simultaneous equations that are not all
linear, of choosing among multiple solutions, and of assigning confidence limits
to any solutions that are obtained.

There is no serious difficulty except from possible large numbers if the equations
are all linear as with linear multiple regression and some causal path analyses.
Solution may be facilitated by use of Gauss’s algorithm.

In the case of factor analysis, a set of coordinate measured variables are rep-
resented as determined by a set of hypothetical ones. The equations to be solved
are all similar quadratics. There are an infinite number of solutions corresponding
to rotations of the set of vectors representing the variables. Hotelling’s iterative
method [15] was a least-square method of finding the factor loadings (path coef-
ficients) of orthogonal axes corresponding to the factors that maximize the variables
attributable to a first general factor. Application to the residuals maximizes the
amount attributable to the second factor and so on until all the variances are
exhausted. If the self-correlations are included in the correlation matrix, the
number of factors equals the number of measured variables according to Hotelling.
There is necessarily a balancing of plus and minus values of the factor loadings
beyond those of the first set.

As noted earlier, most factor analysts prefer to omit the self-correlations until
they are used in a final step of finding special factor loadings for each observed
variable.

For a causal path analysis of a set of coordinate measured variables in terms
of general, group, and special factors, the contamination of the first factor by
contributions from group factors, the set of correlations to be used in deriving a
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set of simultaneous equations should be restricted to those which on trial yield
no significant residuals. The same procedure should be used in calculating the
path coefficients pertaining to successive group factors.

In studies [30, 36] of seven measurements (weight, length, and breadth) of
skull, ear length, lengths of humerus, femur, and tibia of 27 F, rabbits from a
cross between the Flemish Giant breed and the Polish Dwarf breed, the former
3.4 times as heavy on the average as the latter, 18 of the 21 correlation coefficients
yielded path coefficients for a maximized first factor with no significant residuals.
The same was true for those same measurements of the enormously more variable
set of 112 F, rabbits. In both cases, the only three correlations with significant
residuals were those among the leg bones, that between femur and tibia being
much the greatest. A general factor, a leg factor, and a hind leg factor were all
that were indicated in both cases apart from the seven special factors.

Somewhat similarly, path analysis of six bone measurements of 276 hens from
a flock of White Leghorns [30, 35] yielded an important factor for general size
from 12 of the 15 correlations with no significant residuals. The three exceptions
yielded group factors for two skull measurements for lengths of humerus and
ulna and for lengths of femur and tibia in addition to the six special factors. In
contrast with the rabbits, there was no factor for the limbs collectively.

In path analyses of coordinate variables, in which no general factor was expected,
none was found. There were merely group and special factors.

In some path analyses, the number of simultaneous equations derivable from
known correlations fell short of the number of unknown parameters. Only con-
ditional solutions were possible, if simplification of the causal pattern seemed
too unrealistic.

Burks [31] obtained IQs for 214 children, aged 5-14, adopted at average age
3 months, the mental ages of their parents and indices of the home environments
from a California population, white and non-Jewish. She did the same with a
carefully selected control group of 105 children reared by their own parents.

The correlations among the variables in the two sets were very different, clearly
indicating an important influence of heredity in the control data. Burks attempted
to make an evaluation by path analysis but confused this with multiple regression.
I published a note [32] giving what I considered a more adequate analysis. The
number of unknown parameters in the simplest pattern that seemed at all adequate
was greater than the number of independent equations for their solutions, permitting
only a range of possible evaluations, heritability less than 80% but greater than
50%. About 30% of the variance could not be apportioned among unmeasured
environment, heredity, and interaction between them.

I reconsidered the problem many years later [33] using what I then considered
a more adequate causal pattern, but the final evaluation differed little: a possible
range from 45% to 80% heritability.

In this case, I also reviewed data from monozygotic and dizygotic twins as
well as from ordinary siblings. These present, in principle, a means of separating
out nonadditive heredity, but unfortunately require controversial assumptions
with respect to possible environmental differences. Studies of monozygotic twins
reared apart were plagued by evidence that the most numerous data of this sort



A CRITIQUE 765

were fraudulent. Omitting those, analysis indicates heritability closer to the upper
than to the lower limit (in white populations), but data of other sorts that have
been suggested are needed. Where the number of equations was slightly in excess
of the unknown parameters, there was room for possible elaboration of the causal
pattern.

In cases in which the number of equations was markedly in excess and some
or all were nonlinear, solution by such methods as that of least squares or maximum
likelihood may seem impracticable. In a study of deviations from trend of various
corn and hog variables in the period between the Civil War and World War I [34],
374 correlation coefficients were calculated. In other cases in which interacting
variables were considered over a period of time, the numbers of correlations
were fairly large. In such cases, attention has been paid primarily to the large
correlations over short intervals of time. Preliminary estimates might be made
from simplified causal patterns as a basis for solutions by trial and error of the
full causal pattern during the intervals. The usually smaller correlations and more
complicated equations relating to larger intervals of time could be used as checks.

In the case of the hog and corn variables, a central system that included the
larger correlations was analyzed first. This consisted of the price of corn (as an
independent variable), the prices of the homogenous winter hog pack (November
to February) at Western markets, the prices of the highly heterogenous summer
pack (March to October), and a hypothetical variable: the amount of breeding
for which the contemporary live weight and the winter pack a year and a half
later were indices. (Correlation between them was +.78.) After finding 13 path
coefficients to the nearest .05 by trial and error, a second system for each season’s
pack, live weight, and pork (the product) was appended to the central system,
and 16 path coefficients were found by trial and error, again to the nearest .05.
Including three coefficients relating corn acreage, yield, and crop (the product),
and price, 32 path coefficients accounted for all of the 374 correlations as closely
as the numbers warranted. The corn variables, dependent primarily on yield and
hence weather, set going a rapidly damped 4-year cycle of deviations in the hog
variables. Such methods are no doubt far from ideal from the mathematical stand-
point but it is believed contributed to understanding of what was going on in the
populations studied.

Testing was also far from ideal from the mathematical standpoint. The situations
in which standard errors could be deduced were discussed [35] but these do not
go far. The standard errors of the observed correlation coefficients provide a
rough indication of the levels of precision among the path coefficients deduced
from them. The best indication is provided by the degree of consistency of the
results from analyses of similar populations, perhaps subdivisions of the total
set.

Toward the end of their paper, Karlin et al. go into three alternative ways of
dealing with complex structural data. ““(1) One can assume the validity of a
specific modeling form (e.g., linear additive models such as those used in path
analysis and variance component analysis) and try to improve estimation and
hypothesis testing within that framework. It is this approach that we have criticized
in this paper.
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“(2) One can successively examine different classes of models while remaining
committed to the modeling approach itself.

*(3) Finally, and we think most fruitfully, one can adopt an essentially model-
free approach, seeking to understand the data interactively by using a battery of
displays, indices, and contrasts. This approach emphasizes the concept of robustness
in interpreting results.”

The first alternative refers to isolated path analyses. The second corresponds
to the usual treatment of path analysis as an exploratory procedure with frequent
comparisons of the results in different populations that differ more or less in
conditions and with frequent comparisons of the effects of different assumptions
with respect to the causal system [36]. The unstereotyped approach of path analysis
differs profoundly from the stereotyped modes of description designed to avoid
any departures from complete objectivity. The latter has its proper place in which
path analysis is not intended as an alternative, but exploratory investigation of
path analysis also has a place in increasing understanding of what is actually
going on in a population that has been described as objectively as possible.

The obvious distrust of Karlin et al. for the unavoidably somewhat subjective
investigation of causes is reminiscent of the first published criticism of path
analysis: that by Niles [37], replied to by Wright [38], but does not go as far.
Niles disapproved of any use of the concept of causation, urging its replacement
by correlation. He urged the use of headless bars in place of arrows in path
diagrams. He objected to the use of different structural patterns in different cases,
preferring a stereotyped approach to an unstereotyped one. In treating the model-
free approach (3) as preferred alternative to (1) and (2), Karlin et al. are urging
not merely a change in method, but an abandonment of the purpose of path
analysis and evaluation of the relative importance of varying causes. There can
be no such evaluation without a model. Their advice to anyone with an urge to
make such an evaluation is to repress it and do something else.

Summing up, the paper by Karlin et al. is rich in precautions that should be
borne in mind in any analysis of causal systems but I find no reason to modify
my conviction that proper utilization of path analysis as an exploratory procedure
can add greatly to our understanding of what is happening in systems of correlated
variables including ones concerned with human genetic epidemiology.
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